Instal·len a Catalunya el primer sensor automàtic per detectar pedregades


Després de Suïssa, Catalunya és l’únic territori de tot el món amb aquesta tecnologia
 
Catalunya serà després de Suïssa l’únic territori del món que comptarà amb un sensor automàtic per detectar pedregades. L’aparell estarà instal·lat a Raïmat, al Segrià, i permet fer previsions encara més concretes.
 
És un aparell format per dues plaques d’un vidre molt resistent que detecten les vibracions de la pedra i poden registrar el nombre d’impactes per segon a l’instant.
 
Fins ara la tecnologia només permetia fer-ho amb posterioritat. Tal com explica el tècnic del Servei Meteorològic de Catalunya, Tomeu Ribó, això permet confirmar les pedregades a temps real i fer una comparativa amb altres tempestes en zones properes.
 
Les plaques detecten vibracions i aquestes vibracions s’acaben convertint en impactes de pedra i pot detectar el nombre d’impactes de pedra que hi ha per segon per sobre de la placa
 
Tomeu Ribó tècnic del Servei Meteorològic de Catalunya
A més, aquest sensor també permetrà distingir en quins punts hi ha precipitacions líquides o sòlides.
 
Estudien instal·lar aquest sistema en altres punts del Pla de Lleida i Girona
Fins ara aquesta tecnologia només havia estat utilitzada a Suïssa i des del Servei Meteorològic estudien implementar-la en altres punts del Pla de Lleida i Girona, on els episodis de pedra tenen un impacte més gran en l’agricultura. La instal·lació s’ha fet a Raïmat pel gran nombre de pedregades que registra i perquè ja disposa d’una estació meteorològica automàtica. Font: rac1

Hidrogen, combustible alternatiu per a un transport marítim sense emissions

En la indústria naviliera, la decisió de l’Organització Marítima Internacional de limitar les emissions de sofre del combustible a l’0,5% per al 2020 influirà en el negoci de totes les companyies. Aquesta regulació afectarà els vaixells portacontenidors que hauran de canviar els motors o posar sistemes de neteja de sofre en els seus escapaments si han de complir amb les noves directives.

Quines altres opcions hi ha al mercat? Avui dia ja es disposa de motors elèctrics, però la majoria dels vaixells requereixen d’una velocitat màxima molt gran a la qual encara no s’ha arribat; així com d’una instal·lació elèctrica de grans dimensions que suposen uns costos elevats per a altes potències, segons va explicar Indalecio Seijo Jordà, Capità de navili de l’Armada Espanyola, durant l’últim Trobada amb la Mar organitzada pel Clúster Marítim Espanyol sobre els sistemes de propulsió híbrids.

No obstant això, “buscant una menor petjada de CO2 i una versió més barata, la barreja d’hidrogen i oxigen per crear electricitat, pot ser una opció. En els propers 20 o 25 anys els avenços que es prometen poden ser espectaculars” va dir.

El 96% dels vaixells mercants en servei estan propulsats per sistemes mecànics en què un combustible derivat del petroli alimenta un o més motors (generalment dièsel de 2 o 4 temps). La majoria del 4% restant són de propulsió dièsel-elèctrica, en els quals la potència generada pel motor principal es converteix en electricitat per donar al vaixell una gran maniobrabilitat.

No obstant això, s’estan desenvolupant altres alternatives d’energia que podrien impulsar els vaixells del futur, i un d’ells és l’hidrogen: una font de combustible prometedora que ha existit durant força temps, però mai ha trobat una base sòlida en què recolzar-se, ja que la tecnologia i els preus no eren convincents per als operadors tradicionals.

En els últims temps, les cel·les de combustible d’hidrogen es presenta com la millor opció per a les flotes de camions i en espais confinats com ports, aeroports i magatzems on els carretons elevadors d’hidrogen ajuden a reduir les emissions. El cost a llarg termini dels equips impulsats per hidrogen està en línia amb els equips que funcionen amb dièsel, el que el converteix en una alternativa atractiva. A més, l’hidrogen produït a gran escala per electròlisi a partir de fonts renovables està avui en paritat amb el dièsel per a la indústria automotriu, autobusos i camions.

No obstant això, en la indústria marítima, el combustible fòssil és molt més barat i més pràctic en comparació amb les cel·les de combustible d’hidrogen, la qual cosa dificulta la promoció d’aquest últim a la indústria naviliera en general. Aquest combustible a més és fàcil d’adquirir i emmagatzemar, és fàcil de bombar en condicions atmosfèriques perquè és un líquid i també és menys costós. No obstant això, amb la regulació de l’OMI i l’inici creixent de les regulacions ambientals locals, la indústria del combustible d’hidrogen sap que ha d’estar preparada per a una major penetració.

Els assajos pilot estan a Europa. Noruega ha estat una de les pioneres, ja que les polítiques governamentals i la participació de la indústria han ajudat a impulsar la introducció de vaixells de zero emissions que funcionen amb cel·les de combustible d’hidrogen. Però fins al 2020 no s’espera que sigui una realitat la primera ruta d’alta velocitat totalment d’hidrogen del país escandinau. El segon és perquè els vaixells de contenidors en rutes de curta distància entre Escandinàvia i Europa occidental funcionin en part amb combustible d’hidrogen.

“Havent-se demostrat la viabilitat tècnica de les piles de combustible a la construcció naval, la utilització d’hidrogen sembla orientar-se a la seva ús i a l’obtenció de combustibles sintètics. Els estudis fets fins ara determinen que les de protons i les d’alta temperatura són les més adequades per a la indústria marina”, va concloure Jorge Dahl, Business Development Manager de DNV GL en la Trobada del Clúster Marítim Espanyol. Font: elperiodicodelaenergia

La indústria europea fomenta la reutilització del CO2

El projecte de recerca paneuropeu Carbon4PUR suposa un pas més en la investigació sobre com els gasos residuals de la indústria de l’acer poden convertir-se en productes químics per a la producció de plàstics valuosos. Actualment, el consorci inicia l’avaluació de les condicions ideals per a les proves a escala industrial al sud de França, on una fàbrica d’acer d’ArcelorMittal i una planta química del fabricant de materials Covestro són veïns propers. A escala de laboratori, el projecte Carbon4PUR ha mostrat resultats prometedors amb els primers precursors plàstics que s’han obtingut a partir de gasos de combustió com el CO2.

El consorci convida a representants de la indústria, la política, els mitjans de comunicació i les autoritats a un viatge que tindrà lloc el 20 de març a la ciutat portuària de Fos-sur-Mer, prop de Marsella, per informar sobre l’estat del projecte i discutir la infraestructura futura necessària per ampliar la investigació en entorns industrials reals. En aquest sentit, Fos-sur-Mer podria ser la localització ideal per a una planta pilot d’aquest tipus.

“Hem de considerar els residus com a recurs. Tal com pretén el consorci Carbon4PUR, l’enfocament intersectorial és la millor manera d’assolir aquest objectiu “, afirma Markus Steilemann, CEO d’Covestro. “Junts podem fer un major ús de fonts alternatives de carboni com el CO2 per tancar el circuit de carboni i estalviar recursos fòssils directes com el petroli cru”.

Investigant la simbiosi industrial
Coordinat per Covestro, Carbon4PUR és un consorci format per 14 socis industrials i acadèmics de set països. El projecte intersectorial, que s’estén fins a l’any 2020, rep fons de la Unió Europea i té com a objectiu investigar i desenvolupar una nova tecnologia que transformi els fluxos de gas de la indústria de l’acer com el CO2 i el monòxid de carboni (CO) en els anomenats poliols: un component químic clau per a la fabricació d’escumes de poliuretà i recobriments que, d’altra manera, s’obtindrien del petroli cru. La idea és evitar la separació física de CO i CO2 perquè el procés sigui particularment eficient i econòmic.

Carbon4PUR és únic perquè reuneix socis de tota la cadena de valor per treballar de forma conjunta en processos i especificacions. Per a cada pas, els diferents sectors han de cooperar a través de formes que no s’havien utilitzat mai. Fins a la data, el projecte ha mostrat els primers resultats prometedors: les quantitats de prova dels productes intermedis de poliol s’han obtingut tant de CO com de CO2. Així, el consorci treballarà en l’explotació i transferència dels resultats del projecte a públics clau i altres indústries de la Unió Europea.

En el futur, l’ús de carboni com a matèria primera en forma de gasos residuals mixtes obtinguts de la planta d’ArcelorMittal a Fos-sur-Mer es transformaria mitjançant catàlisi en la propera planta d’Covestro per esdevenir un producte químic intermedi. A més, podria ser utilitzat pel fabricant belga d’escumes de poliuretà Recticel i el proveïdor grec de recobriments Mègara Resins per crear productes finals. Els socis acadèmics i institucionals són RWTH Aachen University, TU Berlin, Dechema, Imperial College London, les universitats de Gent i Leiden, el Comissariat Francès d’energia atòmica i energies alternatives, South Pole Carbon Asset Management, Gran Port Marítim de Marsella i Consultors PNO . Aquests socis investiguen la sostenibilitat i diverses qüestions tècniques i econòmiques Per a més informació sobre Carbon4PUR pot consultar el següent vídeo en línia

font:aeqt

Redefinicions de les unitats bàsiques del Sistema Internacional

El cilindre de platí i iridi que es conserva a Sèvres deixarà de ser el patró de referència

Protegit per una campana de vidre, un cilindre de platí i iridi descansa des de fa 130 anys a la petita -i famosa- ciutat de Sèvres, a uns catorze quilòmetres de París. És el quilogram patró, la referència mundial per calibrar qualsevol balança i per comparar qualsevol pes.

Aproximadament cada quaranta anys, s’ha extret el cilindre per calibrar patrons similars que s’han repartit per diversos llocs. Així s’evitava que per tenir un quilogram exacte tothom s’hagués de desplaçar al Bureau International des Poids et Mesures de Sèvres (Oficina Internacional de Pesos i Mesures).

Del 13 al 16 de novembre s’ha celebrat a Versalles la 26a Conferència General de Pesos i Mesures. I no només s’ha jubilat el cilindre, sinó que també altres formes d’establir unitats de mesura.
El naixement del metre

Entre finals del segle XVIII i principis del XIX, diversos investigadors van mesurar amb gran exactitud el tram entre Dunkerque i Barcelona del meridià de París. Va ser tota una aventura que el científic rossellonès Francesc Aragó va narrar en les seves memòries. L’objectiu era establir amb precisió una longitud que permetés definir el metre com a mesura universal, com s’havia proposat des del segle XVII. Així, el metre seria la deumilionèsima part del quadrant terrestre, prenent com a referència aquest meridià que passa per París.

Per tenir una referència clara, es va fabricar una barra d’un aliatge de platí i iridi. La longitud entre dues marques de la barra era un metre exacte. Era el 1889 i la barra es conserva a Sèvres.

Més d’un segle després, per definir el metre ja no calia enviar expedicionaris pel planeta, sinó que es podia fer en el laboratori. El metre es va definir com la velocitat que recorre la llum en un 299.792,458è de segon -és a dir, en 1/299792,458 segons. Era el 1983 i la unitat de longitud depenia d’un fet físic i no d’un patró de metall.

Però, quant era exactament un segon? La unitat de temps es va definir el 1967 en relació amb les oscil·lacions de la radiació de l’àtom de cesi.

Constants físiques
Ara sembla que ha arribat l’hora de canviar novament les definicions. El Sistema Internacional d’Unitats serà reformat. El metre i el segon, com hem vist, ja tenen una definició complexa però exacta, que es pot establir en el laboratori. També la té la candela, la unitat d’intensitat lluminosa, que es defineix amb termes que no tothom coneix, com estereoradiant.

En total, les unitats bàsiques són set. I les quatre que falten canviaran la forma en què es defineixen. El quilo, l’amperi, el kelvin i el mol es definiran d’acord amb constants físiques que tots els científics coneixen i que són un referent immodificable -per això s’anomenen constants.

El quilogram, per exemple, es definirà en relació amb la constant de Planck. Es tracta d’un valor relacionat amb oscil·ladors microscòpics, amb la seva energia i amb la radiació que emet un cos. Ens estalviem més detalls i només afegirem que porta el nom en honor del físic alemany Max Planck, un dels pares de la mecànica quàntica i qui la va proposar.

L’amperi, simbolitzat A, és la unitat SI de corrent elèctric. Es defineix en prendre com a valor numèric fixat de la càrrega elemental (constant e) 1.602176634·10-19 quan s’expressa en C, que és igual a A·s, on el segon es defineix en termes de ΔνCs

Aquesta redefinició evita que l’amperi es defineixi a través d’un sistema experimental de caràcter ideal. Ara fa que la càrrega de l’electró adopti un valor fix en termes d’unitats de SI. Per contra, passen a tindre un valor flotant en aquestes unitats tres altres constants: la permeabilitat del buit, la permitivitat del buit i la impedància d’espai lliure.

El kelvin, simbolitzat K, és la unitat SI de temperatura termodinàmica. Es defineix en prendre com a valor numèric fixat de la constant de Boltzmann (constant k) 1.380649·10-23 quan s’expressa en J·K-1, que és igual a kg·m2·s-2·K-1, on quilogram, metre i segon es defineixen en termes d’h, c i ΔνCs

Aquesta redefinició evita que el kelvin s’hagi de definir a través del triple punt de l’aigua. La nova definició fa que la constant de Boltzmann tingui un valor fix en termes d’unitats de SI. La constant de Boltzmann vincula l’energia cinètica de les partícules a la temperatura.

El mol, simbolitzat mol, és la unitat SI de quantitat de substància. Un mol conté exactament 6.02214076·1023 partícules elementals. Aquest nombre és el valor numèric fix de la constant d’Avogadro, NA, quan s’expressa en la unitat mol-1 i és anomenada nombre d’Avogadro.

Aquesta redefinició evita que el mol es fonamenti en la massa atòmica del carboni-12 expressada en quilograms. Converteix en un valor fix la constant d’Avogadro que vincula nombre de partícules amb quantitat de substància. Per contra passa a adoptar un valor flotant la constant de massa molar.

La candela, simbolitzada cd és la unitat SI d’intensitat lluminosa en una determinada direcció. Es defineix en prendre com a valor numèric fixat de l’eficàcia lluminosa d’una radiació monocromàtica de freqüència 540·1012 Hz (Kcd) 683 quan s’expressa en la unitat lm·W-1, que és igual a cd·sr·W-1 o a cd·sr·kg-1·m-2·s3, on quilogram, mentre i segon es defineixen en termes d’h, c i ΔνCs

Aquesta definició no fa més que remarcar la dependència de la candela respecte del quilogram, del metre i del segon, a través de la relació entre la freqüència electromagnètica i la intensitat lluminosa.

L’objectiu de tot plegat és que els científics puguin determinar amb facilitat les unitats i desenvolupar tècniques més precises. Qualsevol investigador podrà fer-ho. I s’evitaran possibles problemes, com ara que el pes del patró variï, per exemple, perquè s’hi acumulin impureses.

Aquestes noves definicions entraran en vigor el 20 de maig del 2019.

font: cem, dídaclopez, ccma.cat,

URV crea sensors sense bateria alimentats per tecnologia NFC

La Universitat Rovira i Virgili ha desenvolupat sensors sense bateria que s’alimenten de la tecnologia NFC (comunicació de camp proper), que incorporen la majoria de telèfons intel·ligents.

Un equip d’investigadors del Departament d’Enginyeria electrònica, elèctrica i automàtica ha ideat un dispositiu de baix cost i sense bateria que mesura la humitat del sòl, la temperatura i la humitat relativa, mostra aquestes dades en una aplicació i els guarda en el núvol.

Així aprofita la NFC, un sistema d’identificació per radiofreqüència que permet una comunicació ràpida entre dispositius de curt abast i que s’utilitza sobretot com a sistema de pagament a través del telèfon mòbil.

Un xip del sensor capta i emmagatzema l’energia del mòbil a través d’una petita antena, el que li permet mesurar els diferents paràmetres físics i fer els càlculs mitjançant un microprocessador que porta incorporat.

Les dades resultants es transfereixen al mòbil, que al seu torn les envia al núvol a través de la seva connexió a internet

Aquesta transacció de dades es fa en menys d’un segon i sense necessitat de bateria, el que el converteix en una solució ràpida, més econòmica i més ecològica que els dispositius actuals, basats en altres tecnologies com el Wi-Fi o Bluetooth.

El dispositiu pot ser útil per a hivernacles i cultius, ja que permet registrar en tot moment el seu estat, o en el sector alimentari, per comprovar l’estat dels aliments a través de les variacions del color.

Els investigadors, Antoni Lázaro David Girbau i Martí Boada, també destaquen que aquest treball permet pensar en estratègies col·laboradores, basades en l’acció d’apropar el telèfon a un sensor -que pot mesurar paràmetres molt diversos-, que poden fer moltes persones