Unes erugues que digereixen plàstic poden ser la solució a la contaminació per plàstics

Una espècie d’erugues, conegudes com a cucs de cera, poden digerir el plàstic fins el punt de ser capaces d’alimentar-se, literalment, de bosses de plàstic. L’any 2017 es va descobrir per primer cop que tenien aquesta capacitat, cosa que va obrir la porta a que tinguessin un paper crucial en un dels problemes mediambientals més urgents que tenim: el de la contaminació per plàstics, ja que fins i tot són capaços de digerir el polietilè, un dels productes no-biodegradables més comuns. Des d’aleshores, un equip ha estat treballant per comprendre com són capaços de fer-ho, cosa que els ha dut a descobrir que aquesta capacitat tan especial es deu al microbioma d’aquestes erugues.

Continua llegint «Unes erugues que digereixen plàstic poden ser la solució a la contaminació per plàstics»

Investigadors catalans creen un material que podria substituir les bosses de plàstic al súper

L’envàs és biodegradable, d’origen natural i comestible i garanteix les propietats dels aliments

Investigadors catalans han creat un material nou que podria substituir les bosses de plàstic als supermercats. Es tracta d’un embalatge biodegradable, d’origen natural i que, a més a més, és comestible. El nou embolcall està elaborat a partir de matèries primeres d’origen vegetal i garanteix les propietats dels aliments, alhora que n’allarga la vida útil.

De moment, per comprovar l’eficiència d’aquest material, ja l’han provat per embalar maduixes del Maresme i el resultat ha estat molt positiu. La fruita s’ha fet més resistent als fongs i ha mantingut l’aspecte original durant més temps.

L’objectiu: reduir el malbaratament

El projecte està liderat pel Centre Català del Plàstic de la Universitat Politècnica de Catalunya i la investigadora Farayde Fakhouri, i vol reduir el malbaratament d’aliments. Es calcula que un de cada tres aliments que venen els supermercats s’acaba llençant. En el cas de les fruites, verdures i hortalisses, la quantitat de productes que es llencen frega el 50%. Font:rac1

Elaboren bioplàstics a partir de residus orgànics urbans

Segons els investigadors, l’escenari per a la seva comercialització és altament favorable

Un projecte europeu en el qual ha participat la Universitat de Barcelona (UB) ha aconseguit produir bioplàstics a partir de residus orgànics urbans i ha demostrat que la seva comercialització és viable tècnica i econòmicament.

El projecte europeu RES URBIS (Resources from urban bio-waste) ha demostrat que els diferents residus orgànics urbans es poden tractar i obtenir d’ells productes biològics com bioplàstics, amb un valor econòmic superior a el dels clàssics compost i biogàs.

La part experimental de el projecte, que ha durat tres anys i ha comptat amb 3 milions d’euros de pressupost, s’ha portat a terme en dues plantes pilot, a Lisboa (Portugal) i a Treviso (Itàlia), i en cinc laboratoris, un d’ells a la Facultat de Química de la UB. En total, s’han produït prop de 30 quilos de polihidroxialcanoat (PHA), el polímer bàsic per elaborar bioplàstics a partir dels àcids grassos volàtils resultants de la descomposició de residus.

Aquest PHA s’ha obtingut mitjançant tres nous mètodes d’extracció desenvolupats en el marc de el projecte i, posteriorment, l’han processat per obtenir bioplàstics d’ús comercial. “Els resultats han estat molt positius. S’han obtingut mostres de pel·lícula de bioplàstic per usar-les com intercapa amb una pel·lícula adjacent adhesiva, amb gran potencial comercial. Aquests bioplàstics també es poden utilitzar com a béns duradors i com biocomposites amb fibres produïdes a partir de restes de parcs i jardins”, ha detallat Joan Mata, catedràtic d’Enginyeria Química i Química Analítica de la UB, que ha liderat la participació de la UB en el projecte. “A més -ha afegit Mata-, les anàlisis mostren que la presència de microcontaminants orgànics i metalls pesants en aquests materials està per sota del que marca la legislació”.

De cara a comercialitzar aquests bioplàstics, han tingut en compte la normativa europea sobre riscos per a la salut i el medi ambient dels productes químics, i “l’escenari per comercialitzar és altament favorable”, segons Mata. De l’anàlisi econòmica que han fet en diferents escenaris, entre ells l’Àrea Metropolitana de Barcelona, es desprèn que la producció de PHA és viable a partir d’un preu de 3 euros el quilo, i fins i tot inferior si es consideren condicions més favorables de el procés. Aquest preu, comparat amb el del PHA comercialitzat actualment -que s’obté de cultius específics de cereals amb un cost d’entre 4 i 5 euros / quilo-, confirma la viabilitat econòmica. Font:diaridetarragona

Un “gir màgic” del grafè li dona noves propietats com a superconductor electrònic

Investigadors de l’Institut de Ciències Fotòniques, situat a Barcelona, ha descobert noves propietats del grafè

El grafè és un material superlleuger, 100 vegades més dur que l’acer. Es pot obtenir enganxant amb cel·lo mina de la que cau quan fem punxa a un llapis. Observat al microscopi, el grafè és una malla d’àtoms de carboni col·locats en hexàgons.

Fa un any, un equip de l’Institut de Tecnologia de Massachusetts va descobrir noves propietats del grafè superposant-ne dues làmines i fent-ne girar una amb un “angle màgic” d’1,1 graus. Però ara, investigadors de l’Institut de Ciències Fotòniques (IFCO), situat a Barcelona, encara han anat més enllà. Per primera vegada, han portat a la pràctica l'”angle màgic” i han fet descobriments sorprenents. Ho explica Dmitri Efetov, director estudi de l’ICFO:

“Amb la rotació d’1,1 graus, apareix la màgia. Si hi apliques un voltatge, pots modelar molts estats i passar d’un superconductor a un aïllant. Funciona com un interruptor. Això és excepcional. Fa 30 anys que es busca aquest efecte. L’angle màgic del grafè ho permet.”

Arribar fins aquí no ha estat fàcil. Han hagut de superar moltes dificultats, com, per exemple, treure impureses en la fabricació de les làmines de grafè.

“És com posar un protector de pantalla al mòbil: si no ho fas amb cura, hi sortiran tot de bombolles. Amb el grafè hi ha el mateix risc i es resol igual: planxant sobre les làmines. Això sí, en un material a nanoescala.”

Però, quines aplicacions tindrà, aquest descobriment? Aquestes noves qualitats del grafè permetran, per exemple, fer més eficient la transmissió d’energia i estalviar fins a un 60% del que es consumeix actualment. Un gran avenç en plena crisi climàtica.

“Quan el telèfon o l’ordinador s’escalfen és perquè l’electricitat s’escapa pels cables. Això també passa en les plantes elèctriques que es connecten amb les cases. Un superconductor podria ser molt més eficient. I estalviar energia té impacte en el canvi climàtic. En un moment, estalviaries el 60% de l’energia que utilitzem. Aquest estalvi fa la diferència.”

També és una propietat clau per aconseguir fabricar ordinadors quàntics o trens sense fricció. Font: ccma.cat

Un material més prim que un cabell per crear finestres intel·ligents i estalviar energia

Permetrà tant reduir la temperatura de plaques solars i ordinadors com crear finestres intel·ligents i reduir la factura de l’aire condicionat

Imaginem que el sol toca de ple la nostra finestra i això augmenta fins a límits incòmodes la temperatura de casa. Però hi ha un material deu vegades més prim que un cabell que aconsegueix rebaixar uns quants graus la temperatura de la finestra i, en conseqüència, de l’interior. I això, a més de confort, significa un gran estalvi en aire condicionat.

Aquest material és el que han creat investigadors de l’Institut Català de Nanociència i Nanotecnologia (ICN2) i de l’Institut de Ciència de Materials de Madrid (ICMM-CSIC). El seu treball s’ha publicat a la revista Small.

Els sistemes de refrigeració són responsables del 15% del consum global d’energia i del 10% de les emissions de gasos d’efecte hivernacle. Es preveu que aquestes xifres s’hagin triplicat el 2050. Les emissions produïdes contribueixen a l’escalfament global i, per tant, obliguen a consumir més en refrigeració i es generen més emissions. Es tracta d’un cercle viciós.

El nou material és capaç d’eliminar calor i així refredar la superfície en la qual es col·loca sense cap consum d’energia ni emissions de gasos de cap mena. Està format per una matriu d’esferes de sílice de 8 µm de diàmetre -8 milionèsimes de metre-, deu vegades més prim que un cabell humà. Comparat amb grans de sorra, tenen un volum un milió de vegades més petit.
 

Imitar la Terra

El material s’inspira en el mecanisme de regulació de temperatura de la Terra, anomenat refredament radiatiu. El nostre planeta rep radiació ultraviolada del Sol i això fa augmentar la temperatura de la superfície. Però una part d’aquesta energia torna a l’espai com a radiació infraroja. Així la temperatura es regula. I precisament l’efecte hivernacle, provocat per gasos com el diòxid de carboni, fa que bona part d’aquesta radiació infraroja quedi retinguda i la temperatura de la Terra vagi augmentant.

En tot cas, el que ha interessat els investigadors és que els principals responsables de l’expulsió de la radiació són els grans de sorra dels deserts. 

Una de les principals aplicacions seria refredar les plaques solars, perquè una calor excessiva disminueix el seu rendiment. Els investigadors han demostrat que amb el nou material es pot refredar fins a 14 ºC una oblea de silici sota la llum directa del Sol. Un vidre comú només n’abaixa la temperatura 5 ºC. En una superfície com la d’un panell solar, té una potència de refredament radiatiu de fins a 350 W/m2.
 

Alimentar París tot un any

Això significaria eliminar la meitat de la calor acumulada en un panell solar típic en un dia clar. I amb això l’eficiència relativa d’una cel·la solar s’incrementaria en un 8%. Considerant la producció global d’energia solar del 2017, aquest augment d’eficiència seria suficient per alimentar amb energia París durant un any sencer.

Una sola capa de microesferes seria suficient per aconseguir el rendiment òptim. I això augmenta la facilitat d’aplicació. És sis vegades més prim que els materials de refredament radiatiu actuals i evita l’ús de plàstics. Altres aplicacions podrien ser la refrigeració de mòduls termoelèctrics -que converteixen diferències de temperatura en corrents elèctrics- o de sistemes informàtics de centres de processament de dades -l’augment de temperatura és un dels grans problemes que presenten i obliga a una despesa important en refrigeració. O bé finestres intel·ligents que es refrescarien a si mateixes i al seu entorn, com la que descrivíem al principi del text.

Juliana Jaramillo, primera autora de l’article, juntament amb Achille Francone i Nikolaos Kehagias, tots tres membres del Grup de Nanoestructures Fonòniques i Fotòniques de l’ICN2 -que dirigeix Clivia Sotomayor-, han desenvolupat un altre material que és fàcilment escalable i és capaç de proporcionar tant refredament radiatiu com autoneteja. Va ser distingit amb el Collider Tech Award 2019, que atorga The Collider, un programa de transferència tecnològica promogut pel Mobile World Capital Barcelona per connectar la recerca científica amb la iniciativa emprenedora. Font: ccma.cat